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Consider the problem of calculating the aerodynamic characteristics 

of a thin wedge-shaped profile placed at a small angle of attack in a 

sonic flow. When the solution is known in the subsonic region it is 

necessary to continue it past the dividing characteristic line. In the 

supersonic region of the flow it is generally possible to utilize the 

method of characteristics as has for instance been done in [I 1. How- 

ever, in nearly sonic flows it is possible to devise analytical 

methods for this purpose. In [Z 1 such a method was based on the 

hypothesis that the governing equation of Euler-Darboux can be re- 

placed by the wave equation, but this is inconvenient for the continu- 

ation of the field over the upper surface of the profile. 

Apparently, the continuation of the solution was similarly con- 

structed (without indication of underlying simplifications) in [3 1, 

where results of computations of pressure distributions over the 

upper surface of a flat plate are presented. 

Below, the continuation of the solution past the dividing character- 

istic is constructed starting from the solution of a certain boundary- 

value problem of the Euler-Darhoux equation, which takes on the 

assigned values on the dividing characteristic and the zero value on 

the straight line corresponding to the contour of the profile. It is 

noted that reference 14 f solved a similar problem of the Euler- 

Darboux equation. but for different, simpler boundary values. 

AS part of the results the complete picture of the pressure dis- 

tribution over the wedge-shaped profile is obtained as a function of 

the angle of attack. Also, the limits of applicability of the invest- 

igated patterns of flow are shown. 
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1. Problem of flow functions in the hodograph plane 

For simplicity, consider a thin symmetric double-wedge airfoil with 

half nose-angle 8,, chord length b, and angle of attack CL. As in [5 I, 
the profile is studied by means of the following flow patterns. 

I. The stagnation point is assumed to occur at the leading edge. The 

flow is analogous to that at zero angle of attack. 

II. The stagnation point is assumed to occur on the lower front face 

of the wedge. The flow over upper and lower front faces of the profile 

is analogous to the flow over upper and lower surfaces of a flat plate. 

III. The flow over the complete profile is analogous to the flow 

around a flat plate. 

Fig. 1. 

Fig.1 shows the flow over the supersonic face of the profile, where 

the sonic speed is reached at the point A. The solution is continued into 

the region past the dividing characteristic R. The flow accelerates 

around the point A from the sonic curve S to the dividing characteristic 

R and then to the.[terminall characteristic R1. Defining Ri as belonging 

to the first family of characteristics, let us construct the character- 

istic L of the second family, which passes through the trailing edge B. 

This defines the region ABC. The solution in this region is found from 

the conditions on the characteristic R1 and the surface AR. 

In actuality, downstream of R there may arise one or more shock waves 

so that the above description of the flow field may be disturbed. How- 

ever, visual studies of flow over such profiles indicate that, for small 

angles of attack (Flow pattern I), such shock waves are weak and may be 

neglected. For larger angles of attack (Flow patterns II and III), the 

discontinuities over the top surface are oblique so that the regime of 

supersonic flow over the upper front [sic] face of the profile is pre- 

served. Also their intensity is smaller, the smaller 8, and 

in the first approximation we shall assume that the flow is 

downstream of the characteristic R. 

For our variables we choose 

a. Therefore, 

continuous 
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For the unknowns we take 

where 

a = 1, 
a i- % 

1 = - 20, , 7 = 26,, (Flow pattern I) 

20, a=- 1 a + % = - x ’ 3, , 7 = 2e,, 1, = ; (Flow pattern II) 

a 
a=y, 1=-l, 7= a, I, = b (Flow pattern III) 

Here, x,y represent the Cartesian coordinates of the two-dimensional 
flow field and v%, v the components of the velocity. We note that, for 
nearly sonic flows, u”p to terms of higher order and a scalar factor, II, 
is the stream function and $ the velocity potential. 

The equations of motion in the hodograph plane take the form [6 I: 

84 .a,+-gLO, L;!_.,,f&, 
(1.1) 

or, with C$ eliminated: 

(i.2) 

The characteristics of equation (1.2) in the hyperbolic region are 

expressible as 

Fig. 2. 
(1.3) 

In the plane 07, the problem of smooth continuation from the subsonic 
field to the supersonic one is reducible to the following two cases. 
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1. To find the solution a@,q) of eiluation (I.21 in the strip 

which reduces to zero on the characteristic 5 = a(~ = 01’) and t&es on 

the prescribed value Y(@) = [a$/ L$ I,,, on the dividing <parabolic) 
line (Fig. 2). 

2. To find the solution y!f (8.~) of equation (1.2) in the triangle 

abccadc), which becomes zero on the line 8 = p and matches the solution 
of the preceding problem on the characteristic 7 - C%‘(t = a). The con- 
stants above have the following definitions. 

Flow pattern I - lower (upper) rear face of profile: 

a=& @ci3,, p=$, a’=2 (ot’zi, p’=Bl, &A==, Q = - i) (1.4) 

Flow pattern II --- lower rear (upper) front face of profile 

(1.5) 

Flow pattern III - upper surface of profile: 

a’=$, 13’ = 81, it = 0, a=--1 (~3 

Here, in all three cases, 8, = - al, is the value of 0 which corres- 
ponds to the undisturbed free stream. 

In TZ 1 I the solution of the first problem was found, which takes on 
zero value on the characteristic rl = CI’: 

In the same manner, we find that the solution of the first 
which takes on the. zera value on the characteristic 6 = c1 has 

5 

u((F;, X)=y p 
s 

Y (tf dt 

~ (5 - tp (k -tp 

The solution of the second problem in the triangle abc can 

written as a simple linear combination of (1.7) and (1.8): 

Xndeed, if x = a’ - 2 p - a it is seen that (1.9) matches (1.7) on 
the characteristic x = LX’. F’urthermose, if 8 = p, we find from (1,s) that 

problem, 
the form 

P-8) 

now be 
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4= 2p-A; then, with the change of variable of integration t’=2 p- t 

in the second of integrals in (1.9). we conclude that [\b ~t.$,X~l~~~ = 0. 

Similarly, the solution of the second problem in the triangle adc 

takes the form: 

2. Return to the physical plane 

The return to the physical plane rests on the determination of the 

function ~5 (B,rj 1, which corresponds to the velocity potential and appears 

as the dimensionless coordinate x/l, in that plane. For a given function 

$ (8.171, which satisfies (1.2). the function # (8.~1 is determined from 

equations (1.1) up to an additive constant. 

In order to find the pressure distribution over the airfoil one needs 

the values of I$ on the lines 8 = p which correspond to one or the other 

face of the profile, depending upon the choice of CL. These values of 4 

can be computed as follows. Taking account of (1.1) and the fact that 

a#= (a$/‘ah 1 drj along the line 8 = I”, we have: 

where ‘C is the value of 4 at the point c and y, the ordinate of that 

point. Furthermore, from (1.3) follows that a$&& d$/&‘+a~b/dx 

and equation (2.1) may be written either 

Keeping in mind that along the line t+ & = 2~ the identity 

applies, and that also 
df (Xl *=- dfCG-- 4) 

de 

we arrive at the function $J ((,A), determined from (1.9) after some 
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Substituting (2.4) into (2.31, integrating by parts‘changing the 
order of integration according to Dirichlet’s formula, and regrouping, 
we find: 

(2.5) 

The last integral may be expressed in terms of a hypergeometric 
function so that the result takes the form: 

F (x) = (1 - xp m’1 [cc (2 - x)] ( @l’(X) = x --‘jr 2-&F [ ( I,$,+,x 
)I) 

The formula (2.5) finally is written: 

The resultant expression represents (p (t(.q) as an integral operator 
of v(t), prescribed on the interval p < t ,< Ci’. A similar formula can be 
written for the interval d < t < ,u utilizing (2.2): 

In the case where the derivative of u(t) exists over the interval of 
its definition, the above expressions may be transformed by integration 
by parts into 

cp(p, I)=c-~(3”y~~~~t)m[,_(~)‘]~t-,)dt 

?. 

(2.8) 

where 

These last expressions are more convenient for computations because 
the function @ (x) is very nearly linear, namely y = 1.26 x. 

In the cases of interest, one may set c1 = 0, ft’ = 1 in the formulas 
(2.8) and (2.9). 

3. Pressure distributfons and limitations of the flow approximations 

The dimensionless coefficient of pressure is easily expressed through 
the variable q 
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(3.1) 

In the Flow pattern I, we have p = 0 for the upper front face and 

p = 1 for the lower rear face. Since in the upper corner, I$ = 1, then 

C= 1 and therefore the expressions (2.8) or (2.9) take the form 

(3.2) 

s 
l-8 

a= $(- $1 

6 / 3 \“a 
‘p(i, ?)=i-_5\2, Y \ W+&)(i--IW (3.3) 

0 

In [ 5 I, the expression for v(0) was derived. Differentiating v(8) 

and substituting into (3.2) or (3.3), one can obtain the pressure dis- 

tribution over the rear faces of a double-wedge profile under the con- 

ditions of Flow pattern I. Fig.3 displays the results of computations of 

7 and dq /doI for the rear face according to formulas (3.2), (3.3). The 

dashed line intiicates the results of [ 1 1, 

/ 12 14 b6 18 

Fig. 3. 

Numerical integration of the resulting pressure distribution yields, 

for Flow pattern I. 

c, = 5.30 
e;* 

(x + 1)“’ 

c, = 3.21 

[et7 (x + i)l”” a 
0.911 

cm= 
MO (y + VI”* a 

These formulas are applicable for sufficiently small ratios ol/eo. 

In case of Flow pattern II over the upper front face, (p = 0 at the 

leading edge. Then, setting p = cl, C = 0 we have: 
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(3.4) 

Starting from the study of the flow over the lower front face under 

conditions of Flow pattern II when 8 and 8, are sufficiently small, we 
have [ 5 ] : 

1. 

v(e)==-&~-f(L $1 (3.5) 

where 
f (1, t) = I‘,* fct + t)-“I, + (t _ I)-%] - 3 0 [(t - I)+ - 0 + V’“] 

a + e. 2eo 
e = at, e1 = -al, I=-~, a=--. x 

Substituting (3.5) into (3.4). changing the variable of integration 
t- at in the latter, and going to the limit as a+ 0 (8,+0), we ob- 
tain: 

Here 

Along the lower rear surface of the profile 8 = a and the coordinate 
of the lower corner will be 4 = 1. 

Setting p = a: C = 1 in (3.5) and (2.9) and proceeding to the limit 
as a+O: 

1-P 

Figs. 4 and 5 show the dependence of 7 eo2’3 on + for four values of 
the parameter x = a/8,, calculated by formulas (3.6) and (3.?), which 
represent the pressure distribution on the upper front and lower rear 
faces of the profile, 

The formulas allow the assessment of the bounds on Ct/8, within which 
the Flow pattern II represents the flow realistically. Clearly, Flow 
pattern II obtains when there is no sonic point on the upper front and 
lower rear faces. In other cases, the flow is recomputed with representa- 
tion of local supersonic region near the nose or the lower corner of the 
profile. 

Setting p = 0 (q = 0) in (3.6) or (3.7) and carrying out the integra- 
tion we obtain the coordinates of the sonic point on the upper front 

face: 
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4p+ =: + I’JJ [(1 + t)+ + (1 - zp1 - $ [(f - I)+ - (1 + zp1 (3.8) 

and on the lower rear face 
‘p_ = q+ - 1 

Graphically we discover that $ + Z 1 and 
(3.9) 

Ip- & 2 occur when 

(3.10) 

Fig. 4. Fig. 5. 

The last inequality determines the bounds of applicability of Flow 

pattern II. In [5 1 it was experimentally established that the flow 

pattern II is realized for %/8o > 0.6 which agrees well with (3.10). 

1. 

2. 

3. 

4. 
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